این دوره شامل آموزش تخصصی مباحث یادگیری ماشین ، آشنایی با شبکه های عصبی و یادگیری عمیق می باشد .
با شرکت در این دوره از ابتدایی ترین مراحل کار با داده ها ، تا ایجاد انواع شبکه های عصبی مصنوعی ، آموزش و تست آنها را خواهید آموخت .
مخاطبان دوره آموزشی دیتا ساینس :
– دانشجویان و فارغ التحصیلان تحصیلات تکمیلی رشتههای فنی مهندسی، مدیریت و رشتههای علوم پایه
– علاقمندان به حوزه علم داده (Data Science)، یادگیری ماشین و دادهکاوی
– علاقهمندان به امور پژوهشی در حوزه علم داده
– اعضای تیم داده و هوش تجاری شاغل در استارتاپها، سازمانها و کسب و کارها
– علاقمندان به اشتغال در حوزه علم داده
دوره دیتاساینس 2 طی 70 ساعت برگزار می شود و سرفصل آن به شرح زیر است :
بخش اول ، یادگیری ماشین :
- Introduction
- ML Definition
- ML importance & Applications
- Supervised Learning
- Regression
(Univariate and Multivariate Linear Regression)
- Classification
(Logistic regression, neural networks, support vector machines)
- Unsupervised Learning
- Reinforcement Learning
- Regression
- Linear regression
- Gradient descent algorithm
- Multi-variable linear regression
- Polynomial regression
- Normal equation
- Locally weighted regression
- Probabilistic interpretation (MLE)
- Logistic Regression
- Classification and logistic regression
- Probabilistic interpretation
- Logistic regression cost function
- Logistic regression and gradient descent
- Multi-class logistic regression
- Advanced optimization methods
- Regularization
- Overfitting and Regularization
- L2-Regularization (Ridge)
- L1-Regularization (Lasso)
- Regression with regularization
- Classification with regularization
- Neural Networks
- Multi-class logistic regression
- Softmax classifier
- Training softmax classifier
- Geometric interpretation
- Non-linear classification
- Neural Networks
- Training neural networks: Backpropagation
- Training neural networks: advanced optimization methods
- Gradient checking
- Mini-batch gradient descent
- SVM
- Motivation: optimal decision boundary
- Support vectors and margin
- Objective function formulation: primal and dual
- Non-linear classification: soft margin
- Non-linear classification: kernel trick
- Multi-class SVM
- Clustering
- Supervised vs unsupervised learning
- Clustering
- K-Means clustering algorithm
- Determining number of clusters: Elbow method
- Post processing methods: Merge and Split clusters
- Bisecting clustering
- Hierarchical clustering
- Application 1: Clustering digits
- Application 2: Image Compression
- Dimensionality Reduction
- Introduction to PCA
- PCA implementation in python
- PCA Applications
- Singular Value Decomposition (SVD)
- Anomaly Detection
- Introduction to anomaly detection
- Some applications (security, manufacturing, fraud detection)
- Anomaly detection using probabilistic modelling
- Univariate normal distribution for anomaly detection
- Multi-variate normal distribution for anomaly detection
- Evaluation measures (TP, FP, TN, FN, Precision, Recall, F-score)
- Anomaly detection as one-class classification
- Classification vs anomaly detection
- Recommender Systems
- Introduction to recommender systems
- Collaborative filtering approach
- User-based collaborative filtering
- Item-based collaborative filtering
- Similarity measures (Pearson, Cosine, Euclidian)
- Cold start problem
- Singular value decomposition
- Content-based recommendation
- Cost function and minimization
- Reinforcement Learning
بخش دوم , یادگیری عمیق :
- Introduction to deep learning
- Complete Guide to Pytorch for Deep Learning with Python
- Neural Networks Basics
- Shallow neural networks
- Deep Neural Networks
- Perceptron Network and Implementation
- Fully-Connected and MLP networks
- Universal Approximators
- CNN Networks
- RNN Networks
- GAN Networks
- Optimization
- Loss Function and Cost Function
- Train
هیچ دیدگاهی برای این محصول نوشته نشده است.